Programa
Máster Big Data, Data Science & Inteligencia Artificial
Máster formación permanente de la Universidad Complutense de Madrid
Máster Edición 2023-2024
Módulo I: GNU/Linux y Git
El entorno de trabajo con Linux y Git, conocimiento esencial para preparar a los estudiantes en el uso de herramientas fundamentales para la gestión de proyectos y el análisis de datos a gran escala.
Módulo II: Bases de Datos SQL
Diseño y modelización de base de datos y lenguaje de consulta estructurada, más conocido como SQL (Structured Query Language). El modelo entidad-relación, el modelo relacional, la implementación relacional con SQL.
Módulo III: Business Intelligence con Tableau
Introducir al concepto de Business Intelligence, diferenciando éste, del concepto de Machine Learning o de Data Science, su relación con los nuevos paradigmas de Big Data. Para pasar a un enfoque completamente práctico en el que el alumno aprenderá a utilizar Tableau.
Módulo IV: Programación Python
Módulo V: Bases de datos NoSQL
Módulo VI: Tecnologías del Big Data
Módulo VII: Hadoop y Spark
Tras describir el manejo de HDFS (Hadoop Distributed File System), el curso se centrará en Apache Spark, sin duda la tecnología más demandada para procesamiento de grandes volúmenes de datos. Se usará Dataproc de Google Cloud para desplegar un cluster de Spark.
Módulo VIII: Deep Learning
Deep Learning. Introducción y fundamentos de las redes neuronales. Procesamiento de imágenes con redes convolucionales (CNN). Predicción de series temporales con redes recurrentes (RNN). Introducción al procesamiento de lenguaje natural (NLP). Modelos generativos.
Módulo IX: Fundamentos de estadística
Módulo X: Minería de datos y modelización predictiva
A lo largo de este bloque, los alumnos adquirirán los conceptos necesarios para el desarrollo de la modelización predictiva. Para ello, detectarán patrones basados en grandes volúmenes de datos, a través de diversas técnicas de Data Mining.
Módulo XI: Machine Learning con Python
Las diferentes técnicas y algoritmos utilizados, como la regresión lineal, la clasificación, el clustering y el aprendizaje profundo (Deep Learning). La evaluación y selección de modelos, el preprocesamiento de datos, la validación cruzada y el overfitting.
Módulo XII: Aplicaciones del Big Data en la Empresa
Módulo XIII: Visualización avanzada
Aprenderán acerca de las visualizaciones para comunicar y para confundir. Se explorarán herramientas para visualización de datos con librerías como matplotlib y seaborn, entre otras, y se discutirá la gramática de los gráficos, la cual es importante para la comprensión de cómo se construyen y comunican los gráficos.
Módulo XIV: Data science aplicada a la empresa
Visión integral de las empresas orientadas al dato, creación de equipos de científicos de datos y estructuración de un proyecto Data Science. Este módulo aborda igualmente aspectos de la comunicación personal con individuos, la pública ante grupos, y la mediática para audiencias.
Trabajo final Máster
Asimilados todos los conceptos previos, llega el momento de poner a prueba todos los conocimientos adquiridos en el máster. El alumno planteará una estrategia global de inteligencia de datos para una empresa, basándose en diferentes técnicas y software de apoyo de entre los existentes en el mercado.